Abstract

It is well known that electrical properties such as local electrostatic charge distribution at biomaterial surface plays a significant role in biological interactions. The methods currently employed in measuring surface charge in biomaterials such as zeta potential or potentiostatic titration, however, can only measure global charge distribution in macroscopic and colloidal state of biomaterials. By using scanning probe microscopy techniques we investigated the surface charge domains placed on the hydroxyapatite surface. Scattering near field optical microscopy (s-SNOM) was used to image electrostatic charge trapped at pre-existing and irradiation induced defects within these domains, while phase imaging in atomic force microscopy was used to image the carbon contamination. The two techniques can be used for nanoscale imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.