Abstract

The aim of this study was to determine which, from a range of the starch-based biomaterials, would be more suitable to be used in orthopaedic applications. This included blends of corn starch and ethylene vinyl alcohol (SEVA-C), corn starch and cellulose acetate (SCA), corn starch and polycaprolactone (SPCL) and its composites with increasing percentages of hydroxyapatite (HA). Osteoblast-like cells (SaOs-2) were cultured in direct contact with the polymers and composites and the effect of the incorporation and of increasing percentages of the ceramic in osteoblast adhesion/proliferation was assessed. In the evaluation of cell adhesion and proliferation rate, two variables were considered; cells adhered to the bottom of the tissue culture polystyrene wells (TCPS) and cells adhered to the surface of the materials, in order to distinguish, respectively: (i) the effect of possible degradation products released from the materials to the culture medium and (ii) the effect of the surface properties on the osteoblast-like cells. In addition, the morphology of cells adherent to the surface of the starch-based polymers was analysed and correlated with their topography and with other chemical properties previously evaluated. The proliferation rate was found to differ from blend to blend as well as with the time of culture and with the presence of HA depending on the material. SEVA-C and respective composites systematically presented the higher number of cells comparatively to the other two blends. SPCL composites were found to be less suitable for cell proliferation. The amount of cells quantified after 7 days of culture, both on the surface and on the wells showed a delay in the proliferation of the cells cultured with SPCL composites comparatively to other materials and to TCPS. SCA composites, however, did support cell adhesion but also induce a slight level of toxicity, which results in delayed proliferation on the cells adhered to the wells. Cell morphology on the surface of the materials was also, in almost every case, found to be appropriate. In fact, cells were well adhered and spread on the majority of the surfaces. Thus, starch-based biomaterials can be seen as good substrates for osteoblast-adhesion and proliferation that demonstrates their potential to be used in orthopaedic applications and as bone tissue engineering scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.