Abstract

Graphene functionalization by hydroxyalkylation and grafting with polyether polyols enables polyurethane (PU) nanocomposites formation by in situ polymerization with isocyanates combined with effective covalent interfacial coupling. Functionalized graphene (FG) hydroxylation is achieved either by alkylation, transesterification, or grafting of thermally reduced graphite oxide. In the presence of K2 CO3 as catalyst the reaction of FG-OH with ethylene carbonate at 180 °C affords hydroxyethylated FG, whereas transesterification with castor oil produces riconoleiate-modified FG polyols. In the "grafting-from" process, FG-alkoholate macro initiators initiate the graft polymerization of propylene oxide to produce hybrid FG polyols containing 38 and 59 wt% oligopropylene oxide. In the "grafting-to" process 3-ethyl-3-hydroxymethyl-oxetane is cationically polymerized onto FG-OH, producing novel hyperbranched FG-based polyether polyols. Whereas hydroxylation and grafting of FG greatly improve FG dispersion in organic solvents, polyols and even PU, as confirmed by transmission electron microscopy, matrix reinforcement of FG/PU is impaired by increasing alkyl chain length and polyol graft copolymer content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call