Abstract

We report on the effects of electrolytes spanning a range of anions (NaOc, NaSCN, NaNO(3), NaBr, NaCl, NaBu, NaOAc, Na(2)SO(4), Na(2)HPO(4), and Na(2)CO(3)) and cations (LiCl, NaCl, KCl, CsCl, and choline chloride) on the aqueous solubility of an extended surfactant. The surfactant is anionic with a long hydrophobic tail as well as a significant fraction of propylene oxide groups and ethylene oxide groups (C(12-14)-PO(16)-EO(2)-SO(4)Na, X-AES). In the absence of electrolytes, X-AES exhibits a cloud-point temperature that decreases with increasing surfactant concentration. After the addition of salts to the surfactant solutions, various shifts in the solubility curves are observed. These shifts follow precisely the same Hofmeister series that is found for salting-in and salting-out effects in protein solutions. In the presence of different concentrations of sodium xylene sulfonate (SXS), the solubility of the surfactant increases. In this context, SXS can be considered to be a salting-in salt. However, when the electrolytes are added to an aqueous solution of X-AES and SXS the Hofmeister series reverses for divalent anions such as Na(2)SO(4), Na(2)HPO(4), and Na(2)CO(3). Studies on the phase behavior and micelle structures using polarization microscopy, freeze-etch TEM, and NMR measurements indicate a dramatic change in the coexisting phases on the addition of SXS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.