Abstract

Effect of hydrotropes viz. sodium benzene sulfonate (NaBS), sodium toluene sulfonate (NaTS) and sodium xylene sulfonate (NaXS) on the micellization, phase behavior and structure of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer L62 in aqueous solution was studied by surface tension, dye spectral, cloud point and small angle neutron scattering measurements. The addition of hydrotropes increased the critical micelle concentration (CMC) of L62 which appears to be logistic as the added hydrotrope enhances the solubility of PPO moiety (and PEO) making it behave like a more hydrophilic block copolymer that would micellize at high copolymer concentration. Partial phase diagram of L62 in water shows two cloud point (CP) in the concentration range (0–10 wt.%). Addition of hydrotropes shifts the L62 concentration range showing double cloud points at lower side of concentration; sodium xylene sulfonate (NaXS) being more effective. SANS data for L62 in the presence of 0.4 and 0.8 M NaXS at temperatures <30 °C showed unimers which are fully dissolved Gaussian chains. The unimer-to-micelle transition takes place when temperature is increased. It is found that SANS data for L62 in the presence of 0.4 M NaXS (40 and 50 °C) and 0.8 M NaXS (45 and 50 °C) correspond to ellipsoidal structure of micelles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call