Abstract

The pyrolysis of bitumen-impregnated sandstone produces three primary product streams: C 1C 4 hydrocarbon gases, a C 5 + total liquid product, and a carbonaceous residue on the spent sand. The bitumen-derived hydrocarbon liquid was significantly upgraded relative to the native bitumen: it had a higher API gravity, lower Conradson carbon residue, asphaltene content, pour point and viscosity, and a reduced distillation endpoint relative to the native bitumen. The elemental composition was little different from that of the native bitumen except for the hydrogen content, which was lower. Thus, integration of the bitumen-derived liquid into a refinery feedstock slate would require that it be hydrotreated to reduce the nitrogen and sulphur heteratom concentrations and to raise the atomic hydrogen-to-carbon ratio. The bitumen-derived liquid produced in a fluidized-bed reactor (diameter 10.2 cm) from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The process variables investigated included total reactor pressure (11.0–17.2 MPa (1600–2500 psig)); reactor temperature (617–680 K; (650–765 °F)) and liquid hourly space velocity (0.18-0.77 h −1). The hydrogen/oil ratio was fixed in all experiments at 890 m 3 m −3 (5000 scf H 2/bbl). A sulphided Ni-Mo on alumina hydrodenitrogenation catalyst was used in these studies. The extent of denitrogenation and desulphurization of the bitumen-derived liquid was used to monitor catalyst activity as a function of process operating variables and to estimate the extent of catalyst deactivation as a function of time on-stream. The apparent kinetics for the nitrogen and sulphur removal reactions were determined. Product distribution and yield data were also obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.