Abstract
Tellurium (Te) nanostructures with controlled morphology have received the considerable attention in various applications owing to tunable optic, thermoelectric, photoelectronic, piezoelectric, and electrochemical properties. Herein, we introduce the cost-effective and eco-friendly synthesis of Te nanorods (Te NRs) from end of life electronic devices via hydrothermal methods. The Te NRs show the average diameter of 44.6 nm and a length of 358 nm in presence of polyvinylpyrrolidone, as a stabilizing agent. Moreover, the bismuth and intact p-type semiconductor (i.e., Bi0.5Sb1.5Te3) are selectively recovered as intermediated products. The Te NRs exhibit the NO2 gas sensing properties with concentration as low as 1 ppm at room temperature and fast response/recovery times of 1.59 and 2.10 s at 1 ppm, respectively. We believe that this powerful approach can be expanded to not only selective recovery of valuable materials but synthesis of various nanomaterials from waste electronic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have