Abstract

The sunset yellow, as a synthetic food coloring azo dye, was detected in the present work using a new sensitive and selective sensor based on the modification of screen-printed electrode surface with Copper ferrite nanoparticles (CuFe2O4/SPE). Thus, a facile hydrothermal protocol was performed to prepare the CuFe2O4 nanoparticles, followed by characterization applying valid techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). Chronoamperometry, differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were employed to determine the electrochemical behavior of as-fabricated sensor. According to the electrochemical findings, a greater anodic peak current was found for the sunset yellow oxidation on the CuFe2O4/SPE than that on the unmodified SPE. The electrocatalytic response for the sunset yellow oxidation on the CuFe2O4/SPE in phosphate buffer (0.1 M, pH = 7.0) was effective, with an excellent sensitivity (0.1919 μA μM−1). There was a linear relationship between the voltammetric current and different sunset yellow concentrations (0.03–100.0 μM). The calculated limit of detection (LOD = 3Sb/m) for the sunset yellow was 0.009 μM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.