Abstract

Mesoporous La2CrMnO6 double perovskite is successfully synthesized using the hydrothermal technique, and characterized its physicochemical properties using X‐ray diffraction, X‐ray photoelectron spectroscopy, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy, and transmission electron microscopy. The synthesized material exhibits a high surface area of 57.07 m2 g−1, providing more active sites for electrochemical charge storage. The electrochemical performance of the La2CrMnO6 as an electrode material is evaluated for the first time, which reveals an excellent specific capacitance of 1416 F g−1 at 1 A g−1 in a three‐electrode setup. Results suggest that mesoporous La2CrMnO6 double perovskite is a promising electrode material for electrochemical energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.