Abstract

Today, the issue of increasing heat transfer has attracted a great deal of attention from researchers for the development of a variety of heat exchangers to achieve high efficiency, low cost, lightweight. In this paper, the hydrothermal performance is investigated by incorporating vortex generator and hole and their proper positioning on trapezoidal fin. For this purpose, numerical modeling of water flow in a rectangular channel is performed in two laminar and turbulent flow regimes and for 5 models with different positions of vortex generator and hole in constant size geometric parameters. The results showed that in both flow regimes, the pressure drop was increased by inserting the hole on top and bottom. To create a better comparison, the ratio of the Colburn factor to friction factor was defined and applied in two simple and powerful ways and the best hydraulic-thermal performance was obtained for the trapezoidal fin with the vortex generator on the right and the hole in the middle, so that in the turbulent flow regime, the highest value for the ratio of Colburn factor to friction factor (simple ratio and power ratio) was reported as 0.0539 and 0.01504 for this position, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.