Abstract

The Cenozoic Urumieh-Dokhtar Magmatic Belt (UDMB) in Iran is considered as one of the major Cu-bearing regions in the world with high potential for the occurrence of giant/large porphyry Cu ± Mo ± Au systems. In the UDMB, porphyry Cu mineralization is strictly associated with Miocene intrusions originating mostly from collisional-related partial melting of subduction-modified juvenile lower crust. In this study fluid inclusion coupled with laser Raman analysis is used to characterize and compare the fluid evolution of the large Meiduk deposit and smaller low grade porphyry copper systems (e.g., Keder, Sarkuh, and Iju) in the UDMB. It can be shown that enhancement of metal fertility of a porphyry system is controlled by several factors: (1) The salinity of early hydrothermal ore fluids; maximum ore-efficiency is seen in porphyry deposits showing supersaturation of NaCl in the pristine high temperature fluids (e.g., Meiduk), (2) Presence of CO2 and fast exhausting of CO2 vapor components during early stages of mineralization, (3) Temperature decrease especially during the main ore stage, and (4) High oxygen fugacity (near to the magnetite – hematite oxygen buffer) of the most primitive fluids in the early stages of hydrothermal system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call