Abstract

Solfatara crater is located within the Campi Flegrei caldera to the west of Naples (Italy). It is one of the largest fumarolic manifestations known, and the rocks hosting the hydrothermal system are affected by intense hydrothermal alteration. Alteration can result in changes of degassing behavior, and in the formation of a cap rock thereby increasing the probability of phreatic eruptions. Here, we investigate the effects of alunitic (solfataric) alteration on the mineralogy, the physical properties (porosity, density, permeability) and the mechanical properties (strength) of the rocks involved, as well as its influence on fragmentation and ejection behavior. Our results show that the pristine mineralogy of deposits from the vicinity of the Solfatara cryptodome and from Pisciarelli is almost completely replaced by amorphous silica and alunite. The differences in the degree of alteration among the samples series are reflected in the investigated properties and behavior as well as in the analysis of the experimentally generated particles. Alunitic alteration increases porosity and permeability, whereas it reduces density, elastic wave velocity and strength leading to higher fragmentation and ejection speeds for the sample series examined in this study. Our results also show that alteration results in the generation of a high fraction of fines (particle sizes <10μm) during fragmentation, mainly composed of alunite crystals. Due to their potential for inducing chronic disease, dispersion of such material should represent a serious health hazard on a local scale and the evaluation of precautions should be considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.