Abstract

Fast-sinking zooplankton carcasses and fecal pellets appear to contribute significantly to the vertical transport of particulate organic carbon (POC), partly because of low temperature that decreases microbial degradation during the descent into the deep ocean. Increasing hydrostatic pressure could further reduce the degradation efficiency of sinking POC, but this effect remains unexplored. Here, the degradation of carcasses and fecal pellets of the abundant marine copepod Calanus finmarchicus was experimentally studied as a function of pressure (0.1-100MPa). Samples were either exposed to elevated pressure in short 1-day incubations or a gradual pressure increase, simulating continuous particle sinking during a 20-day incubation. Both experiments revealed gradual inhibition of microbial respiration in the pressure range of 20-100MPa, corresponding to 2-10-km depth. This suggests that hydrostatic pressure impedes carbon mineralization of fast-sinking carcasses and fecal pellets and enhances the deep-sea deposition rate of zooplankton-derived organic material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call