Abstract
ABSTRACT The masses of galaxy clusters are commonly measured from X-ray observations under the assumption of hydrostatic equilibrium (HSE). This technique is known to underestimate the true mass systematically. The fiducial FLAMINGO (Full-hydro Large-scale structure simulations with All-sky Mapping for the Interpretation of Next Generation Observations) cosmological hydrodynamical simulation predicts the median hydrostatic mass bias to increase from $b_\text{HSE} \equiv (M_\text{HSE,500c}-M_\text{500c})/M_\text{500c} \approx -0.1$ to −0.2 when the true mass increases from group to cluster mass scales. However, the bias is nearly independent of the hydrostatic mass. The scatter at fixed true mass is minimum for $M_\text{500c}\sim 10^{14}~\text{M}_\odot$, where $\sigma (b_\text{HSE})\approx 0.1$, but increases rapidly towards lower and higher masses. At a fixed true mass, the hydrostatic masses increase (decrease) with redshift on group (cluster) scales, and the scatter increases. The bias is insensitive to the choice of analytic functions assumed to represent the density and temperature profiles, but it is sensitive to the goodness of fit, with poorer fits corresponding to a stronger median bias and a larger scatter. The bias is also sensitive to the strength of stellar and active galactic nucleus feedback. Models predicting lower gas fractions yield more (less) biased masses for groups (clusters). The scatter in the bias at fixed true mass is due to differences in the pressure gradients rather than in the temperature at $R_\text{500c}$. The total kinetic energies within $r_\text{500c}$ in low- and high-mass clusters are sub- and supervirial, respectively, though all become subvirial when external pressure is accounted for. Analyses of the terms in the virial and Euler equations suggest that non-thermal motions, including rotation, account for most of the hydrostatic mass bias. However, we find that the mass bias estimated from X-ray luminosity weighted profiles strongly overestimates the deviations from HSE.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have