Abstract

Leaching of chemicals from adhesion promoters is, in particular, problematic for the food, water, pharmaceutical, and MedTech industries where any chemical contamination is unacceptable. A solution to this issue is to employ covalently attached nanoscale polymer brushes as adhesive layers for plastics. One of the industrially most relevant adhesion targets in that respect is poly(dimethylsiloxane) (PDMS), being used for many high-end applications such as catheters and breast implants. In this work, we have synthesized a novel surface-immobilized poly(2-hydroxyethyl methacrylate)-based brush adhesive containing reactive hydrosilane groups that can bond directly to PDMS. Two different medical grades of addition-cured PDMS were molded on top of titanium substrates already coated with the polymer brush. Titanium plates were used for the chemical analysis, and titanium rods were used for adhesion testing. Adhesion testing revealed a high adhesive force, in which cohesive failure was observed in the bulk PDMS. The necessity of the hydrosilane group in the polymer brush adhesive layer was demonstrated in comparative studies using similar brushes lacking this functionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.