Abstract
Jet fuel was prepared from low-temperature coal tar (LTCT) via two-stage fixed beds that were filled with two commercial catalysts. The effects of temperature (340–400 °C), pressure (6–12 MPa) and liquid hourly space velocity (LHSV) (0.4–1.0 h−1) on the hydrogenation performance and properties of the product were investigated, while the H2/oil ratio was maintained at a constant 1600 : 1 in all cases. In this study, the freezing point and the heat value increased with increasing pressure and LHSV over the catalysts. However, the freezing point decreased and then increased, while the heat value increased and then decreased with the increase of temperature. The jet fuel (180–280 °C) fraction was separated from the product and analyzed. The density, the freezing point and the heat value of the jet fuel were 0.815 g mL−1, −56 °C and 42 MJ kg−1, respectively. The main components of jet fuel were cycloalkanes and isoalkanes. The results showed that the jet fuel obtained from the LTCT had a series of advantages such as lower freezing point and higher heat value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.