Abstract

This study illustrates the preparation of robust superhydrophobic and superoleophilic reduced graphene oxide (rGO) and MoS2 nanoparticles incorporated polyurethane (PU) foam by in-situ polymerization via the one-shot method. Spectroscopic analyses confirmed the successful formation of nanoparticles and also the development of the hybrid PU material. The sponges were evaluated based on hydrophobicity and oil absorbance capacities and the modified foam exhibits the water contact angle of 151°. The pore size of the foam analyzed using an optical microscope and the effect on the density and porosity were also analyzed. The oil absorption capacity of the foam was studied using standard sorption testing. The oil and organic solvent selectivity and recyclability of hybrid PU foam were performed to estimate whether the foams could be recycled and reused. The modified system shows very high selectivity (83–94%). The recyclability of the foam was about 35 cycles without much reduction in its own weight and after 55 cycles more than 80% of the oil absorption capacity was conserved. The resulting hybrid PU material is highly efficient, porous, ultralight, hydrophobic and reusable sorbent material and displays great potential for versatile environmental remediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.