Abstract
Aerogel fibers, characterized by their ultra-low density and ultra-low thermal conductivity, are an ideal candidate for personal thermal management as they hold the potential to effectively reduce the energy consumption of room heating and significantly contribute to energy conservation. However, most aerogel fibers have weak mechanical properties or require complex manufacturing processes. In this study, simple continuous silk fibroin-agarose composite aerogel fibers (SCAFs) were prepared by mixing agarose with silk fibroin through wet spinning and rapid gelation, followed by solvent replacement and supercritical carbon dioxide treatment. Among them, the rapid gelation of the SCAFs was achieved using agarose physical methods with heat-reversible gel properties, simplifying the preparation process. Hydrophobic silk fibroin-agarose composite aerogel fibers (HSCAFs) were prepared using a simple chemical vapor deposition (CVD) method. After CVD, the HSCAFs' gel skeletons were uniformly coated with a silica layer containing methyl groups, endowing them with outstanding radial elasticity. Moreover, the HSCAFs exhibited low density (≤0.153 g/cm3), a large specific surface area (≥254.0 m2/g), high porosity (91.1-94.7%), and excellent hydrophobicity (a water contact angle of 136.8°). More importantly, they showed excellent thermal insulation performance in low-temperature (-60 °C) or high-temperature (140 °C) environments. The designed HSCAFs may provide a new approach for the preparation of high-performance aerogel fibers for personal thermal management.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have