Abstract

Biological membranes feature heterogeneous mixtures of lipids with different head and tail characteristics. Their biophysical properties are dictated by the intimate interaction among different constituent lipids. Previous studies suggest that the membrane area-per-lipid (APL) deviates from the linear rule of mixtures (LRM) for binary lipid membranes, but the underlying mechanism remains elusive. Our molecular dynamics (MD) simulations of binary lipid membranes consisting of lipids with different tail characteristics reveal a competitive mechanism whereby lipids tend to deform each other to minimize the hydrophobic mismatch between their tails. Depending on the relative tail lengths and saturation levels, this may result in an either positive or negative deviation of APL from the LRM. As lipid packing plays an essential role in membrane fusion and peptide-membrane binding, our findings may help guide the selection of lipids for the effective rational design of nanoliposomes and membrane-targeting peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.