Abstract
Maximum yield stress data showed that low molecular-weight (Mw) (∼7 kDa) poly(methacrylic acid) sodium salt (PMA-Na) additive at low surface coverage displayed significant patch charge attraction in contrast to polyacrylic acid sodium salt (PAA-Na) additive of similar Mw and surface coverage. Intramolecular hydrophobic interaction between CH3 groups in the polymer molecule during adsorption produced a much more compact patch with a higher negative charge density giving rise to the stronger patch charge attraction. At high surface coverage, intermolecular hydrophobic interaction between CH3 groups on the adsorbed layer of the interacting particles was not observed from maximum yield stress data. Such interaction was, however, observed in AFM force-distance characterization data for interaction between spherical alumina particles and sapphire plates coated with PMA-Na in retraction mode. The compression of the adsorbed layers at contact during the approach mode was postulated to deform and breakup the intramolecular interaction between the CH3 groups and promoted intermolecular interaction between these groups in the layer coating the particle and plate. This resulted in a strong adhesion force seen in the retraction mode after contact at low pH near the point of zero charge.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have