Abstract

Understanding the intricate processes underlying olfaction necessitates unraveling the complexities of odorant binding protein’s interactions with volatile compounds triggering hygienic behavior in Apis mellifera, This study delves into the intricate processes of olfaction by focusing on the interactions between Apis mellifera Odorant Binding Protein 4 (AmelOBP4) and volatile compounds associated with hygienic behavior, employing a comprehensive computational approach. Molecular docking analyses reveal detailed binding interactions, emphasizing the significance of hydrophobic interactions and specific amino acid residues in stabilizing AmelOBP4-volatile complexes, notably with 2-nonacosanone (-8.4 kcal/mol) and hexacosyl acetate (-8.4 kcal/mol). Molecular dynamics simulations demonstrate sustained stability and principal component analysis affirms structural integrity through restricted global motions. Binding free energy calculations underscore robust interactions, with per-residue free energy decomposition identifying key amino acids contributing significantly to binding affinity. These findings illuminate the pivotal role of hydrophobic interactions and specific residues (Phe 60, Leu 83, Ile 116, Leu 126, and Leu 130) in modulating AmelOBP4-volatile interactions, providing foundational insights into volatile-based applications and potential olfactory response modulation, contributing to our understanding of olfactory processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.