Abstract

A cellular coating based on hydrophobic interactions of an elastin-like recombinamer (ELR) with the cell membrane is presented. It is well-documented that biophysical properties such as net charge, hydrophobicity, and protein-driven cell–ligand (integrin binding) interactions influence the interaction of polymers, proteins or peptides with model membranes and biological cells. Most studies to enhance membrane–substrate interactions have focused on the introduction of positively charged groups to foster electrostatic interactions with the negatively charged membrane. Herein, we present an antagonistic approach based on ELRs with varying amounts of hydrophobic cholesteryl groups (ELRCTAs). The ability of the membranes to stabilize cholesteryl groups is hypothesized to assist the coordination of hydrophobic ELRs with the membrane. The main objective was to generate a defined cellular coating of a recombinant protein that allows for total sequence control and less host, or batch-to-batch, variation as a substitute for the existing coatings like alginate, polyelectrolytes, collagens, and fibronectin. We used an in vitro cell-binding assay to quantify cell–substrate interactions, showing enhanced cellular recognition and matrix distribution with an increasing number of cholesteryl groups incorporated. These novel materials and the versatile nature of their protein sequence have great potential as cellular markers, drug carriers, or hydrophobic cell-binding domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.