Abstract

The main therapeutic strategy for Hemophilia B patients involves the administration of recombinant coagulation factors IX (rFIX). Although there are various approaches to increasing the activity of rFIX, targeted protein engineering of specific residues could result in increased rFIX activity through enhanced γ-carboxylation. Specific amino acids in the propeptide sequence of vitamin K-dependent proteins are known to play a role in the interaction with the enzyme γ-carboxylase. The net hydrophobicity and charge of the γ-carboxylic recognition site (γ-CRS) region in the propeptide are important determinants of γ-carboxylase binding. Sothe contribution of individual γ-CRS residues to the expression of fully γ-carboxylated and active FIX was studied. Propeptide residues at positions -14, -13, or - 12 were substituted for equivalent prothrombin amino acids by SEOing PCR. The recombinant FIX variants were transfected and stably expressed in Drosophila S2 cells, and the expression of both total FIX protein and active FIX was assessed. While overall the substitutions resulted in an increase of both total FIX protein expression as well as an increase in the portion of active FIX, the highest increase in FIX protein expression, FIX activity, and specific FIX activity was observed following the simultaneous substitution of residues at positions -12, -13, and - 14. The enhanced rFIX activity was further confirmed by enrichment for functional, fully γ-carboxylated rFIX species via barium citrate adsorption. Our findings indicate that by increasing both the net charge and the net hydrophobicity of the FIX γ-CRS region, the expression of fully γ-carboxylated and as such active FIX is enhanced. Graphical abstract .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call