Abstract

The global presence of soot has significant effects on regional and global climate, as well as human health. Influence of soot on radiation budget, rain formation and heterogeneous chemistry, and its residence time in the atmosphere are largely dependent on its ability to interact with water. While freshly emitted soot is extremely hydrophobic, oxidation during aging causes soot to become more hydrophilic. Laboratory studies demonstrate that aged soot attracts and retains water, and can be efficiently removed from the troposphere by entrapment in existing liquid cloud droplets or by activation as cloud condensation nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.