Abstract

In this study, the hydrophilic property of polyvinyl alcohol (PVA) was utilized to improve the hydrophilicity and mechanical strength of electrospun polyvinylidene fluoride (PVDF)-supported thin film composite (TFC) forward osmosis (FO) membranes. The PVDF nanofiber support was modified with PVA via dip coating and acid-catalyzed crosslinking with glutaraldehyde prior to formation of polyamide active layer on the support via interfacial polymerization. The influence of PVA modification on the morphology and physical properties of PVDF support was evaluated through several characterization techniques while the flux performance was assessed using lab-scale FO membrane unit. The fabricated PVA-modified TFC FO membranes exhibited high hydrophilicity, porosity, and mechanical strength. FO performance tests reveal excellent flux performance (34.2LMH using 1M NaCl and DI water as draw and feed solution, respectively) and low structural parameters (154μm) of the PVA-modified TFC FO membrane. Dip coating of the nanofiber support in PVA is therefore a simple and effective method for the improvement of PVDF support hydrophilicity to fabricate high performance TFC FO membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call