Abstract

Drugs delivered by proper carriers enter into the cells much more rapidly and carry out their action much more promptly than in the free forms. A high drug concentration can be sustained for longer periods of time at the target site in the cell. In in vivo conditions, this would translate into a reduction of systemic toxicity, dosage and frequency of dosing. Dendritic polymers significantly affect drug delivery in terms of reaching the target site, modifying the bio-distribution of the drug, and enhancing the efficacy of different drugs including anticancer compounds. 2-({[2-({[(2-tolyl)amino]carbonothioyl}oxy)ethyl]amino}carbo-nyl)benzoic acid 1 is a thiocarbamate derivative belonging to an already reported class of non-nucleoside HIV-1 reverse transcriptase inhibitors. In in vitro assay it showed no cytotoxic effects but was endowed with very low solubility and poor activity against wild-type HIV-1 (EC50 = 27 μM). With the aim at improving its water solubility, 1 has been successfully incorporated inside non-toxic amino acids-modified core-shell hetero dendrimers. IR, NMR, zeta potential, mean size of particles, buffer capacity and in vitro release profile of prepared materials were reported. All dendriplexes were evaluated in cell-based assays to assess their cytotoxic profile. The obtained complexes, which harmonize a peripheral polycationic character and a buffer capacity which presuppose efficient cells penetration and increased residence time with a not PAMAM structured biodegradable scaffold, were well water-soluble and could rationally appear as a promising set of prodrugs for safe in vivo administrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call