Abstract

Hydromagnetic stagnation point flow and heat transfer over a nonlinearly stretching/shrinking surface of micropolar fluid is investigated. The numerical simulation is carried out through Chebyshev Spectral Newton Iterative Scheme, after transforming the governing equations into dimensionless boundary layer form. The dual solutions are reported for different values of magnetic and material parameters against the limited range of stretching/shrinking parameter. It is also noted that second solution only occurs for the negative values of stretching/shrinking parameter, whereas for the positive values unique solution exists. The effects of dimensionless parameters are described through graphs. It is seen that the flow and heat transfer rates can be controlled through the material parameter and magnetic force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call