Abstract

With every passing day the heat transfer enhancement in the convectional base fluids plays a major role in several industrial and engineering processes. During these process nanofluids has attained its great importance to enhance the heat transfer rate in the convectional flows. Keeping this into view, in this study we investigated the stagnation point flow, heat and mass transfer behaviour of MHD Jeffrey nanofluid over a stretching surface in the presence of induced magneticfield, non-uniform heat source or sink and chemical reaction. Using similarity technique, the governing boundary layer partial differential equations are transformed into nonlinear coupled ordinary differential equations. The ordinary differential equations are solved numerically using Runge-Kutta-Felhberg scheme. An excellent agreement of the present results has been observed with the existed literature under some special cases. The effects of various dimensionless governing parameters on velocity, induced magneticfield, temperature and nanoparticle concentration profiles are discussed and presented through graphs. Also, friction factor, local Nusselt and Sherwood numbers are computed and discussed. Dual solutions are presented for suction and injection cases. It is found that dual solutions exist only for certain range of suction or injection parameter. It is also observed that an increase in the heat and mass transfer rate for higher values of Deborah number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.