Abstract

The present work deals with the numerical study of two-dimensional incompressible, magnetohydrodynamic Falkner-Skan flow of Carreau nanofluid over wedge, plate and stagnation of the flat plate with convective boundary condition and chemical reaction. The influence of thermophoresis and Brownian motion are taken into account. Similarity transformations are utilized to transform the governing equations into a system of non-linear ordinary differential equations and solved numerically using Runge–Kutta Fehlberg scheme. A comparison has been made with the published results which reveals a good agreement. The influence of different physical parameters on flow, temperature and nanoparticle concentration distributions have been discussed in detail. A constitutional analysis has been made for skin friction coefficient, heat and mass transfer rates. Results elucidate that the influence of magnetic parameter on velocity is high over flat plate compared with wedge and stagnation point of the flat plate. Heat transfer performance is higher on shear thinning fluid compared with shear thickening fluid. Further, an increase in Brownian motion decreases the heat transfer rate but enhances the mass transfer rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.