Abstract

ABSTRACTQuantifying the uncertainty in hydrological forecasting is valuable for water resources management and decision-making processes. The hydrological uncertainty processor (HUP) can quantify hydrological uncertainty and produce probabilistic forecasts under the hypothesis that there is no input uncertainty. This study proposes a HUP based on a copula function, in which the prior density and likelihood function are explicitly expressed, and the posterior density and distribution obtained using Monte Carlo sampling. The copula-based HUP was applied to the Three Gorges Reservoir, and compared with the meta-Gaussian HUP. The Nash-Sutcliffe efficiency and relative error were used as evaluation criteria for deterministic forecasts, while predictive QQ plot, reliability, resolution and continuous rank probability score (CRPS) were used for probabilistic forecasts. The results show that the proposed copula-based HUP is comparable to the meta-Gaussian HUP in terms of the posterior median forecasts, and that its probabilistic forecasts have slightly higher reliability and lower resolution compared to the meta-Gaussian HUP. Based on the CRPS, both HUPs were found superior to deterministic forecasts, highlighting the effectiveness of probabilistic forecasts, with the copula-based HUP marginally better than the meta-Gaussian HUP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.