Abstract
The main objective of this research is to evaluate the effects of climate change first on precipitation and temperature, and then on the runoff characteristics of two tropical watersheds located in Senegal and Guinea-Bissau. To achieve this, eighteen General Circulation Models (GCMs) were selected to measure various climate change scenarios under the Shared Socioeconomic Pathways (SSP) SSP1-2.6 and SSP5-8.5, using the reference period of 1985–2014. The GR2M hydrological model was employed to replicate past monthly surface runoff patterns for the Casamance and Kayanga-Géva watersheds. After calibrating and validating the GR2M model, the researchers simulated the predictable effect of climate change on the flow for the near future (2021–2040), medium future (2041–2060), and distant future (2081–2100) for each watershed, using the GCM multi-model ensemble mean. The quantile method was used to correct bias in temperature and precipitation data. The results of bias correction give a correlation coefficient greater than 0.9% for temperatures and 0,6% precipitation between the outputs of the multi-model ensemble and observations used. The results indicate also that all watersheds are expected to experience drier conditions in the near-future, mid-future, and far-future periods under both the SSP1-2.6 and SSP5-8.5 scenarios. Furthermore, the predictable temperature trends consistently show a warmer situation with growing radiative making in the future times. However, the primary factor influencing changes in flow for all watersheds is the projected precipitation changes. The anticipated drier conditions in the near-future, mid-future, and far-future horizons under both scenarios would lead to significantly reduced runoff volumes at the beginning and middle of the rainy season. Consequently, the projected seasonal changes in river flow for all catchments (e.g., under SSP5-8.5 scenario, a decline of -34.47%, -56.01%, and -68.01% was noted, respectively, for the horizons 2050, 2070, and 2090 for the Casamance basin) could lead to new frequent occurrences of drought and water scarcity associated with past hydrological regimes. These scenarios enhance the necessity of improving water management, water prizing, and water recycling policies, to ensure water supply and to reduce tensions among regions and countries.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have