Abstract

Naoli river basin(NRB), with an area of 24,863 km2, is the largest basin and also the largest marsh distribution area in Sanjiang Plain, Heilongjiang, China. The hydrological evolution process of wetland in NRB has made a marked ecological responses for anthropic activities, also reflects the drying trend of the Sanjiang Plain, Northeast China. Global climate warming also contributes to the hydrological evolution process. The following key research results are obtained: (1) The monthly average water level of Naoli river at Caizuizi hydrological station in different ages showed a marked decline tendency, the annual mean water level dropped from 96.63 m during 1960–1969 to 95.59 m during 2000–2005, the water level drawdown is 1.04 m; (2) The annual runoff flowing into wetlands in NRB decreased. Duration of Naoli river and its tributaries being thoroughly frozen from riverbed to river-water-surface showed an prolonged trend, and the water level drawdown in frozen seasons increased. The water storage capacities of wetlands in NRB declined. (3) The interactions between ground water and surface water in wetland areas are close. The ground water level variation span is bigger than that of surface water level in wetland areas of NRB. The drawdown of ground water level promotes the surface water level to decline, correspondingly. In recent 20 years, the cultivated area extension of rice field in upstream NRB has made an adverse influence on the hydrological processes of wetlands. (4) The wetland area decrease and farmland area increase significantly contribute to the runoff depth decrease of wetlands in NRB. The runoff depth variability has been mostly posed by anthropic activities. (5) Reservoirs, ditches and dykes in NRB have greatly changed the runoff generation processes. Thickness of the seasonal frozen soil layer becoming thinner and the evaporation potential becoming bigger also contribute to the runoff depth reduction and the water level drawdown of rivers. The present study results will provide a scientific basic for developing an integrated watershed management program for NRB, especially, restoring the wetland hydrological processes, maintaining or improving the wetland structure and enhancing the wetland service functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.