Abstract

The Naoli River (NLR) Basin is a crucial distribution area for wetlands in China. Investigating the link between land use changes and carbon storage in this basin is of significant importance for protecting regional ecosystems and promoting the sustainable development of the social economy. This paper uses long-term Landsat satellite images provided on the GEE (Google Earth Engine) platform and the random forest classification algorithm to create spatial distribution maps of land use in the NLR Basin from 1993 to 2022. The study analyzes the dynamic changes in wetlands in the basin over the past 30 years and employs the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) model to explore the temporal and spatial evolution characteristics of carbon storage. The results reveal that the wetland area of the NLR Basin showed a downward trend from 1993 to 2022, with a total decrease of 1507.18 hm2 over 30 years. During this period, the carbon storage in the NLR Basin decreased, with a cumulative loss of 1.98 × 107 t, mainly due to the continuous reductions in wetland and forest land. Additionally, the change in carbon storage in the basin has a strong spatial and temporal relationship with the changes in land use/cover area. The total carbon storage is positively associated with the areas of wetland, forest land, and water bodies. The conversion of wetlands into any other land type results in the reduction in carbon storage. These findings can improve our understanding of the spatial and temporal dynamics of wetlands in the NLR Basin over the past 30 years and enable us to analyze the relationship between land use changes and regional carbon storage. The results of this study have great significance for protecting the wetland ecology and regional carbon balance in the NLR Basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call