Abstract

Winery wastewater (WW) is a high-volume biowaste and, in the context of Marlborough and New Zealand wineries, there is a growing recognition of the need to improve current WW disposal systems to mitigate negative environmental impacts. The application of WW to land is a low-cost method of disposal, that could significantly reduce the environmental risk associated with WW directly entering surface and groundwater bodies. This study analysed elemental concentrations in WW and soils from three Marlborough vineyards across their annual vintage to determine the loading rates of nutrients into WW and the subsequent accumulation effects of WW irrigation on receiving soils. The findings showed loading rates of approximately 1.8 t ha−1 yr−1 of sodium within WW and a significant increase in soil sodium concentration and pH, attributed to sodium-based cleaning products. A loading rate of approximately 4 t ha−1 yr−1 of total organic carbon was also identified within WW, however, significant losses in soil carbon, nitrogen, magnesium and calcium concentrations were identified. Focusing efforts to retain key nutrients from WW within soils could provide benefits to New Zealand’s wine industry, facilitating increased biomass production in irrigation plots, thereby increasing biodiversity and potentially generating incentives for vineyard owners to contribute to increasing biomass carbon stocks and offset agricultural greenhouse gas emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.