Abstract
AbstractDeltaic systems are composed of distributary channels and interdistributary islands. While previous work has focused either on the channels or on the islands, here we study the hydrological exchange between channels and islands and point at its important role in delta morphology and ecology. We focus our analysis on Wax Lake Delta in coastal Louisiana (USA) and characterize the surface water component of hydrological connectivity through measurements of water discharge and hydraulic tracer propagation. We find that deltaic islands are zones of significant water flux as 23–54% of the incoming distributary channel flux enters the islands. A calculation of the travel times through a channel‐island complex shows travel times through the islands to be at least 3 times their channel counterparts. A dye release experiment also indicates that travel times in islands are much longer that those within channels as dye remained in the island for the 3.8 day duration of the experiment. Additionally, islands are more sensitive than channels to environmental forces such as tides, which cause flow reversal and thus can increase travel times through the islands. Our work defines the “hydrological network” of a river delta to include not only the distributary channel network but also the interdistributary islands, quantifies the implications of channel‐island hydrological connectivity to travel times through the system, and discusses the relevance of our findings to channel mouth dynamics at the delta front and the potential for denitrification in coastal systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have