Abstract

This study aimed to enhance flood forecasting accuracy in the Liangfeng River basin, a small karst watershed in Southern China, by incorporating the Available Reservoir Capacity of Karst (ARCK) into the HEC-HMS model. This region is often threatened by floods during the rainy season, so an accurate flood forecast can help decision-makers better manage rivers. As a crucial influencing factor on karstic runoff, ARCK is often overlooked in hydrological models. The seasonal and volatile nature of ARCK makes the direct computation of its specific values challenging. In this study, a virtual reservoir for each sub-basin (total of 17) was introduced into the model to simulate the storage and release of ARCK-induced runoff phenomena. Simulations via the enhanced model for rainfall events with significant fluctuations in water levels during 2021–2022 revealed that the Nash–Sutcliffe efficiency coefficient (NSE) of the average simulation accuracy was improved by more than 34%. Normally, rainfalls (even heavy precipitations) during the dry season either do not generate runoff or cause negligible fluctuations in flow rates due to long intervals. Conversely, relatively frequent rainfall events (even light ones) during the wet season result in substantial runoff. Based on this observation, three distinct types of karstic reservoirs with different retaining/releasing capacities were defined, reflecting variations in both the frequency and volume of runoff during both seasons. As a real-time environmental variable, ARCK exhibits higher and lower values during the dry and rainy seasons, respectively, and we can better avoid the risk of flooding according to its special effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.