Abstract

Abstract. Multiple processes contributing to natural land subsidence in a shallow coastal aquifer near Ravenna (Italy) were identified by analysing the relationships among different data set time series (water table level, rainfall, land reclamation drainage, sea level, etc.) and establishing the correlations with vertical ground motion observed at a high-resolution settlement gauge. Our study highlights the presence of three deformation components related to different processes controlling land subsidence: elastic, delayed-elastic, and irreversible (plastic) components. The elastic and delayed-elastic components are closely related to water table fluctuations that change the effective stress in two portions of the coastal aquifer at a daily (in the sandy unconfined portion) and seasonal time scales (in the layered clay-rich semi-confined prodelta portion), respectively. The irreversible component represents the trend in the land subsidence time series and is due to primary consolidation (pore pressure dissipation) of the fine-grained prodelta levels above where the settlement gauge is located. The amplitudes of the elastic component can be up to 0.2–0.3 mm whereas the amplitude of the delayed-elastic component reaches 0.89 mm. The primary consolidation rate of deformation is 0.9 mm yr−1 and constrains the likely age of prodelta sediments deposition to 1300–2800 years before present. The delayed-elastic subsidence rate has similar magnitude to that due to primary consolidation and is connected to poroelastic effects in the prodelta sequence following seasonal variations in water table. Our findings are important for planning land subsidence management and monitoring strategies especially where the surface aquifer structure is heterogeneous due to different depositional settings. The natural land subsidence rate in the Holocene sediments of the shallow coastal aquifer of Ravenna (North eastern Italy) that we measured in this study accounts for 10 %–20 % of the total current land subsidence rate observed in this portion of Ravenna coastal area (10–20 mm yr−1).

Highlights

  • By using data from a high-resolution settlement gauge, our present work aims to define the processes governing shallow ground settlement and verify land subsidence and water table fluctuations interactions in the shallow coastal aquifer of Ravenna

  • Our work highlights the contribution of natural processes such as primary consolidation and water table fluctuations in the Holocene shallow coastal aquifer of Ravenna to the cumulative land subsidence rate observed in the area (Bertoni et al, 1995; Teatini et al, 2005; Baldi et al, 2009)

  • The seasonal component of the water table fluctuation has an amplitude of about 0.60 m with a maximum positive value (0.41 m) at the beginning of March and a secondary maximum (0.3 m) at the end of October, whereas the principal minimum (−0.19 m) is at the end of August and a secondary one (−0.08 m) is at the end of December

Read more

Summary

Introduction

By using data from a high-resolution settlement gauge, our present work aims to define the processes governing shallow ground settlement (magnitude and development over time since the installation of the instrument) and verify land subsidence and water table fluctuations interactions in the shallow coastal aquifer of Ravenna. Our work highlights the contribution of natural processes such as primary consolidation (compaction of sediments under their own weight via expulsion of interstitial pore water) and water table fluctuations in the Holocene shallow coastal aquifer of Ravenna to the cumulative land subsidence rate observed in the area (Bertoni et al, 1995; Teatini et al, 2005; Baldi et al, 2009). Antonellini et al.: Hydrologic control on natural land subsidence in the shallow coastal aquifer gages are powerful tools to investigate the coupling of different processes within a shallow aquifer and to constrain the time of its deposition (Antonellini et al, 2019)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call