Abstract
AbstractThe seasonal snowmelt period is a critical component of the hydrologic cycle for many mountainous areas. Changes in the timing and rate of snowmelt as a result of physical hydrologic flow paths, such as longitudinal intra‐snowpack flow paths, can have strong implications on the partitioning of meltwater amongst streamflow, groundwater recharge, and soil moisture storage. However, intra‐snowpack flow paths are highly spatially and temporally variable and thus difficult to observe. This study utilizes new methods to non‐destructively observe spatio‐temporal changes in the liquid water content of snow in combination with plot experiments to address the research question: What is the scale of influence that intra‐snowpack flow paths have on the downslope movement of liquid water during snowmelt across an elevational gradient? This research took place in northern Colorado with study plots spanning from the rain‐snow transition zone up to the high alpine. Results indicate an increasing scale of influence from intra‐snowpack flow paths with elevation, showing higher hillslope connectivity producing larger intra‐snowpack contributing areas for meltwater accumulation, quantified as the upslope contributing area required to produce observed changes in liquid water content from melt rate estimates. The total effective intra‐snowpack contributing area of accumulating liquid water was found to be 17, 6, and 0 m2 for the above tree line, near tree line, and below tree line plots, respectively. Dye tracer experiments show capillary and permeability barriers result in increased number and thickness of intra‐snowpack flow paths at higher elevations. We additionally utilized aerial photogrammetry in combination with ground penetrating radar surveys to investigate the role of this hydrologic process at the small watershed scale. Results here indicate that intra‐snowpack flow paths have influence beyond the plot scale, impacting the storage and transmission of liquid water within the snowpack at the small watershed scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.