Abstract

Barrier islands provide a first line of defense for coastal communities against storms, hurricanes, and sea-level rise. The geomorphology of barrier islands exerts a major control on storm impact and island recovery. In turn, barrier island geomorphology is affected by subsurface hydrogeologic conditions. In this study, we investigated the relationship between subsurface hydrogeologic conditions and geomorphology of Padre Island, with a focus on the influence of human development. We measured apparent electrical conductivities using frequency-domain electromagnetic (FDEM) surveys and spatially correlated them with the island's morphology. The latter was generated from a 1 m resolution digital elevation model. Four distinct zones were identified from the observed variations in apparent conductivity and elevation, revealing their inverse correlation. The beach area (Zone I) exhibits the highest apparent conductivity (289.7 ± 66.3 mS/m) and the lowest elevations (1.4 ± 0.2 m). These trends are largely due to the proximity of the beach to saline groundwater and maritime floods. Conversely, the foredune area (Zone II) presents the lowest apparent conductivity (19.0 ± 3.4 mS/m) and the highest elevation (4.5 ± 0.4 m) due to a greater distance from saline waters, deeper groundwater levels, and relatively dry soil conditions. Human development has significantly impacted Zones III (east central zone) and IV (west central zone), contributing to an increase in apparent conductivity (Zone III: 40.3 ± 21.8 mS/m; Zone IV: 159.5 ± 83.0 mS/m) and a reduction in elevation (Zone III: 2.1 ± 0.5 m; Zone IV: 1.3 ± 0.4 m). Anthropogenic activities have modified hydrologic patterns, introduced conductive materials, and altered vegetation cover and soil composition. This research elucidates the interplay between subsurface electrical conductivity, surface morphology, and the impact of human development on barrier island geomorphology, providing crucial insights for coastal management and conservation efforts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call