Abstract
We report a calculation of binding energy of the ground state of a hydrogenic donor in a quantum cylindrical GaAs dot surrounded by Ga1−xAlxAs with finite confinement potentials, in the presence of a uniform electric field applied parallel to the dot axis. The binding energy increases inchmeal as the radius of the dot decreases until a maximum value for a certain value of the quantum dot radii, then begins to drop quickly. Results for the binding energies and electronic wave function density of the hydrogenic-donor as functions of the impurity position, dot thickness and applied electric field are also presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have