Abstract
The hydrogen-bond (H-bond) dynamics and water structural transitions in aqueous ethylene glycol (EG) solution were investigated on the basis of concentration- and temperature-dependent two-dimensional Raman correlation spectroscopy (2D Raman-COS). At room temperature, EG-induced enhancement of the water structure when the EG/water molar ratio is less than 1:28 resulted from the hydrophobic effect around the methylene groups of EG. The decrease in the temperature caused an enhancement of the Raman peak at about 3200 cm-1, representing an increase in the orderliness of water molecules. Further analysis of the water-specific structures by 2D Raman-COS reveals that the strong H-bond structure preferentially responds to external perturbations and induces a weak H-bond structural transition in water. Finally, EG-induced water structural transitions were calculated by the density functional theory (DFT). Hopefully, 2D Raman-COS combined with DFT calculations would advance the study of solute-induced water structural transitions in water-organic chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.