Abstract

PtRh bimetallic nanoparticle (NP)-encaged hollow mesoporous silica nanoreactors (PtRh@HMSNs) are prepared by employing metal-ion-containing charge-driven polymer micelles as templates. These nanoreactors feature ∼1–2 nm PtRh NPs in ∼11 nm hollow cavities of HMSNs. Among various PtxRhy@HMSNs, Pt0.77Rh1@HMSNs show the best catalytic performance for toluene hydrogenation. Under 30 °C, atmospheric H2 pressure, and a toluene/(Pt+Rh) molar ratio of 200/1, Pt0.77Rh1@HMSNs reach 100.0% of methyl cyclohexane yield and demonstrate a much better catalytic performance than monometallic Pt@HMSNs and Rh@HMSNs and their physical mixtures. Moreover, Pt0.77Rh1@HMSNs exhibit a good catalytic stability during recycling experiments. The enhanced performance of Pt0.77Rh1@HMSNs is ascribed to the interaction between Pt and Rh, the beneficial effect of the relatively large mesoporous channels for mass transfer, as well as the confinement effect of functional NPs inside hollow cavities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call