Abstract
Single crystalline Si epilayers were grown on sapphire (1 1 ̄ 0 2) substrates through a three-step growth method by rapid thermal chemical vapor deposition (RTCVD). Hydrogenation of the epilayers was performed by the hydrogen-plasma exposure (HPE) in a remote plasma chemical vapor deposition (RPCVD) system, following rapid thermal annealing. It was found that the hydrogenation treatment improves the crystallinity of the Si epilayer as well as the electrical properties of Si epilayers. After hydrogenation, especially, the intensity of the deep level defects which are responsible for the lattice mismatch between Si and the sapphire substrate decreases. Also, dislocations and microtwins are reduced remarkably, improving the crystallinity. In Schottky diodes fabricated on hydrogenation-processed Si epilayers, the leakage current decreases one order of magnitude in comparison to non-hydrogenated samples. It is suggested that these characteristics could be explained by the hydrogen incorporation at defects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have