Abstract

ABSTRACTWe grow hydrogenated amorphous-silicon (a-Si:H) by the hot-wire chemical vapor deposition (HWCVD) technique. In our standard tube-reactor we use a single filament, centered 5 cm below the substrate and obtain deposition rates up to 20 Å/s. However, by adding a second filament, and decreasing the filament-to-substrate distance, we are able to grow a-Si:H at deposition rates exceeding 167 Å/s (1 µm/min). We find the deposition rate increases with increasing deposition pressure, silane flow rate, and filament current and decreasing filament-tosubstrate distance. There are significant interactions among these parameters that require optimization to grow films of optimal quality for a desired deposition rate. Using our best conditions, we are able to maintain an AM1.5 photoconductivity-to-dark-conductivity ratio of 105 at deposition rates up to 130 Å/s, beyond which the conductivity ratio decreases. Other electronic properties decrease more rapidly with increasing deposition rate, including the ambipolar diffusion length, Urbach energy, and the as-grown defect density. Measurements of void density by small-angle X-ray scattering (SAXS) reveal an increase by well over an order of magnitude when going from one to two filaments. However, both Raman and X-ray diffraction (XRD) measurements show no change in film structure with increasing deposition rates up to 144 Å/s, and atomic force microscopy (AFM) reveals little change in topology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.