Abstract

Ring-substituted α-bromoacetophenones react with alcohols in a chain reaction leading to the corresponding acetophenone, HBr, and the carbonyl compound from oxidation of the alcohol. Two different mechanisms, involving hydrogen or electron transfer by ketyl radicals, have been proposed in order to accommodate the unusual selectivities of these reactions. By studying the efficiency of isotope incorporation from deuterated alcohols, it has been possible to determine the relative contributions from both mechanisms. For example, electron transfer dominates in the case of 2-propanol, while hydrogen transfer is more important for methanol. The results demonstrate that ring substitution in the starting ketone is not a main contributing factor in the discrimination between the two mechanisms. The only parameter that seems to be playing a major role is the nature (reducing strength) of the ketyl radicals. Key words: dehydrobromination, charge transfer, isotope effect, ketyl radicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call