Abstract

Two mechanisms of hydrogen transfer are often observed in photochemical reactions. In a one-step procedure, the electron and the proton are simultaneously transferred (concerted process). In a two-step procedure, first an electron is transferred and the proton follows. Such steps are observed in photochemically induced radical reactions with α,β-unsaturated carbonyl and carboxyl compounds in which a radical species is added at either the α- or the β-position. Both mechanistic steps are also observed in photochemical reactions of imides. In Norrish­–Yang-type reactions, especially with aromatic carbonyl compounds, the spin multiplicity has an influence on the resulting cycloadditions. Such reactions are interesting tools for the synthesis of natural products and for diversity-oriented synthesis. Photochemically induced hydrogen transfer in photoredox catalytic reactions is discussed in connection with proton-coupled electron transfer. 1 Introduction 2 Two Mechanisms of Hydrogen Transfer in Competition 3 Further Reactions of Interest for Application to Synthetic Organic Chemistry 4 Photochemical Keto–Enol Tautomerization 5 Electron and Hydrogen Transfer in Photoredox Catalytic Reactions 6 Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.