Abstract

Hydrogen storage capacity of a pristine multi-walled carbon nanotubes is increased 10-fold at 298 K and an equilibrium hydrogen pressure of ∼23 atm, upon addition of a hydrogen spillover catalyst cobalt- and copper oxide, from 0.09 to 0.9 wt.%. In situ reduction method is utilized to synthesize Co-oxide/MWCNTs and Cu-oxide/MWCNTs composite. Blocking of channels and pores of MWCNTs by oxide nanoparticles during preparation method is responsible for low BET specific surface area of composites compared to pristine sample. X-ray diffraction, scanning, and transmission electron microscopy demonstrates nanostructural characterization of MWCNTs and composites. Thermogravimetric analysis of two oxide/MWCNTs composites showed a single monotonous fall related to MWCNTs gasification. Enhancement of hydrogen storage of both composites is attributed to the spillover mechanism due to decoration of Co and Cu-oxide nanoparticles on the outer surface of MWCNTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.