Abstract

BackgroundGreen synthesis as a technique of preparation of metal/metal oxide nanomaterials is becoming an important and competitive method of preparation replacing the conventional method of preparation. Among metal oxides, nanocatalyst copper(II) oxide is considered as a very important and potent catalyst/photocatalyst with a very wide range of applications.ResultsIn this work, copper(II) oxide nanoparticles were prepared with the assist of aqueous spinach extract from copper metal powder. Spinach extract catalyzes the formation of copper oxide nanoparticles with manipulation of chlorophyll that exists in the extract. The produced copper(II) oxide nanoparticles were characterized using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD).ConclusionsIt was proved that spinach extract catalyzes the preparation of copper(II) oxide nanocatalyst. It was elucidated from the characterization technique that the produced nanoparticles are pure copper oxide with particle size range of 60–100 nm.

Highlights

  • Green synthesis as a technique of preparation of metal/metal oxide nanomaterials is becoming an important and competitive method of preparation replacing the conventional method of preparation

  • Recently, green chemistry routes of preparation of different metal/metal oxide nanomaterials have been attracting increasing attention due to their advantages being operating under mild conditions, environmentally safe, and assist in manipulating the reaction condition toward the production of desired engineered nanomaterials

  • X-ray diffraction spectroscopy X-ray diffraction technique confirms the identity of the products and determines the crystal structure and the crystallite size of the obtained product

Read more

Summary

Introduction

Green synthesis as a technique of preparation of metal/metal oxide nanomaterials is becoming an important and competitive method of preparation replacing the conventional method of preparation. Green chemistry routes of preparation of different metal/metal oxide nanomaterials have been attracting increasing attention due to their advantages being operating under mild conditions, environmentally safe, and assist in manipulating the reaction condition toward the production of desired engineered nanomaterials. These green synthesis routes could be achieved by using microbial microorganism, plant-related materials, and plant extract. As it is well known, nanomaterials are effectively existed in the scientific research market due to their marvelous wide range of applications as well as their outstanding optical, chemical, and physical properties which affect to a great extent their activity.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.