Abstract

The engineering correlations for assessment of hazard distance defined by a size of fireball after either liquid hydrogen spill combustion or high-pressure hydrogen tank rupture in a fire in the open atmosphere (both for stand-alone and under-vehicle tanks) are presented. The term “fireball size” is used for the maximum horizontal size of a fireball that is different from the term “fireball diameter” applied to spherical or semi-spherical shape fireballs. There are different reasons for a fireball to deviate from a spherical shape, e.g., in case of tank rupture under a vehicle, the non-instantaneous opening of tank walls, etc. Two conservative correlations are built using theoretical analysis, numerical simulations, and experimental data available in the literature. The theoretical model for hydrogen fireball size assumes complete isobaric combustion of hydrogen in air and presumes its hemispherical shape as observed in the experiments and the simulations for tank rupturing at the ground level. The dependence of the fireball size on hydrogen mass and fireball’s diameter-to-height ratio is discussed. The correlation for liquid hydrogen release fireball is based on the experiments by Zabetakis (1964). The correlations can be applied as engineering tools to access hazard distances for scenarios of liquid or gaseous hydrogen storage tank rupture in a fire in the open atmosphere.

Highlights

  • The engineering correlations for assessment of hazard distance defined by a size of fireball after either liquid hydrogen spill combustion or high-pressure hydrogen tank rupture in a fire in the open atmosphere are presented

  • This study focuses on hazard distance defined by the maximum size of the fireball created by the combustion of gaseous or liquid hydrogen released from a storage tank

  • The significance of the present study is in development of practical tools—best-fit and conservative-fit correlations—for assessment of fireball thermal hazards arising from rupture of gaseous hydrogen tanks and liquified hydrogen spills in open spaces

Read more

Summary

Introduction

Hazard distance can be used as an input to quantitative risk assessment (determination of the quantitative or qualitative value of risk related to a specific situation and a recognized threat/hazard) to estimate, for example, the risk of injury or fatality to people, e.g., via probit functions. This study focuses on hazard distance defined by the maximum size of the fireball created by the combustion of gaseous or liquid hydrogen released from a storage tank. The harm to people and damage to buildings after rupture of a pressurized tank with flammable substance in a fire can be assessed by pressure effects of the blast wave, i.e., pressure and impulse, and thermal effects of the fireball, i.e., high temperature and radiative heat flux.

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call