Abstract

Hydrogen sulfide (H2S) is now considered to be a gasotransmitter and may be involved in the pathological process of Alzheimer's disease (AD). A majority of APP is associated with mitochondria and is a substrate for the mitochondrial γ-secretase. The mitochondria-associated APP metabolism where APP intracellular domains (AICD) and Aβ are generated locally and may contribute to mitochondrial dysfunction in AD. Here, we aimed to investigate the ability of H2S to mediate APP processing in mitochondria and assessed the possible mechanisms underlying H2S-mediated AD development. We treated neurons from APP/PS1 transgenic mice with a range of sodium hydrosulfide (NaHS) concentrations. NaHS attenuated APP processing and decreased Aβ production in mitochondria. Meanwhile, NaHS did not changed BACE-1 and ADAM10 (a disintegrin and metalloprotease 10) protein levels, but NaHS (30μM) significantly increased the levels of presenilin 1(PS1), PEN-2, and NCT, as well as improved the γ-secretase activity, while NaHS (50μM) exhibits the opposing effects. Furthermore, the intracellular ATP and the COX IV activity of APP/PS1 neurons were increased after 30μM NaHS treatment, while the ROS level was decreased and the MMP was stabilized. The effect of NaHS differs from DAPT (a non-selective γ-secretase inhibitor), and it selectively inhibited γ-secretase in vitro, without interacting with Notch and modulating its cleavage. The results indicated that NaHS decreases Aβ accumulation in mitochondria by selectively inhibiting γ-secretase. Thus, we provide a mechanistic view of NaHS is a potential anti-AD drug candidate and it may decrease Aβ deposition in mitochondria by selectively inhibiting γ-secretase activity and therefore protecting the mitochondrial function during AD conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.